
An O(n) algorithm to construct the greatest convex
minorant and least concave majorant

Andrew J. Radcliffe

September 4, 2023

Abstract
TODO

1 Introduction
Consider a set of points, (xi, f(xi)), i = 0, . . . , n − 1. Suppose that one conjectures that f is
convex, but for arbitrary reasons, the observation of f is such that the set is not convex. How-
ever, we would like to construct a convex set (xi, f̄(xi), i = 0, . . . , n − 1 which contains the set
of points, and which satisfies the property of f̄(xi) ≤ f(xi) ∀i, i.e. f̄ is the greatest convex
minorant (GCM), if we were to impose the restriction that x ≥ 0. We assume that the set
Ω = {xi : i = 0, . . . , n− 1} is convex. Here, we admit a slight departure from the conventional
definition of the greatest convex minorant by permitting x < 0.

Let us consider the points to be ordered such that xi−1 < xi. We have already assumed that
f is convex. If we assume that that f is once continuously differentiable then we have [1]

Df(xi−1)(xi − xi−1) ≤ f(xi)− f(xi−1) (1)

which implies that
f(xi) ≥ f(xi−1) +Df(xi−1)(xi − xi−1) (2)

That is, the f(xi) always lies below the linear approximation of f at xi. We can generalize this
to the case where f is not differentiable by substituting for the Jacobian, Df(x), the transpose
of the subgradient, g, such that

f(xi) ≥ f(xi−1) + gTf(xi−1)(xi − xi−1) (3)

Thus, if one had a method to obtain the Jacobian (or subgradient), one could compute the
nearest convex approximation to f(xi) as

f(xi) = f(xi−1) +Df(xi−1)(xi−xi−1)

= f(x0) +

i∑
i∗=1

Df(xi∗−1)(xi∗ − xi∗−1)
(4)

If we restrict ourselves to x ∈ R, then one is justified in re-writing (1) as

Df(xi−1) ≤
f(xi)− f(xi−1)

xi − xi−1
(5)

1



It is self-evident that the values of Df(x) which one could compute from the data would simply
recapitulate the observed values of f(x) when plugged in to (4). This appears to merely re-state
the problem, but provides an insight: we must construct an approximation to Df(x) such that
f is convex.

Consider that if f is twice continuously differentiable, then f is convex on Ω if and only
if for each x ∈ Ω the Hessian of f at x is a positive semi-definite matrix. Thus, to construct
a Df(x) such that f is convex, we must have D2f(x) ⪰ 0, ∀x ∈ Ω. When Ω ⊂ R, i.e. the
one-dimensional case, this simplifies to d2f(x)

dx2 ≥ 0,∀x ∈ Ω. In other words, the derivative Df(x)
must be ≥ 0. One such way to construct such a Df(x) is to perform isotonic regression on the
values of Df(xi−1) computed using (5). By definition, the resultant function has derivative ≥ 0,
hence, f(xi) computed by this approximation will be convex.

Assume that the framework above constructs the GCM. We note that if f is convex, then −f
is concave, hence, we can apply the same methodology to construct the least concave majorant
from a set of points (xi, f(xi)), i = 0, . . . , n−1, where x ∈ Ω is a convex set, by constructing the
GCM of the set of points (xi,−f(xi)), i = 0, . . . , n− 1, then negating the resultant f̄ . That is,
starting from a concave f , we construct a convex approximation to −f , denoted f̄ , then negate
said approximation to recover a concave function as −f̄ . It is a simple result, but demonstrates
that the algorithm presented in the next section solves two problems (which are in fact the same
problem, masquerading under different names).

2 Algorithm
The mention of isotonic regression above hints at what the O(n) algorithm will entail. Specifically,
the constrained optimization problem to be solved is:

min
1

2

n−2∑
i=0

wi(Df(xi)− µi)
2

subject to µ0 ≤ µ1 · · · ≤ µn−3 ≤ µn−2

(6)

in which the order of the points, (xi, f(xi)), is such that x0 < x1 · · · < xn−2 < xn−1. This
problem can be treated using Langrange multipliers. Let us define the Lagrangian,

L(µ, λ) =
1

2

n−2∑
i=0

wi(Df(xi)− µi)
2 +

k−3∑
j=0

λj(µj − µj+1) (7)

The partial derivative of which is

∂L(µ, λ)

∂µm
= λm − λm−1 − wi(Df(xm)− µm) (8)

We now write the Karush-Kuhn-Tucker (KKT) conditions:

∂L(µ, λ)

∂µm
= 0, m = 0, . . . , k − 2 derivative of Lagrangian equal to zero (9)

µj ≤ µj+1, j = 0, . . . , k − 3 primal feasibility (10)
λj ≥ 0, j = 0, . . . , k − 3 dual feasibility (11)
λj(µj − µj+1) = 0, j = 0, . . . , k − 3 complementary slackness (12)

2



Where we define λ−1 = λk−2 = 0 in order to make (??) valid for m = 0, . . . , k − 2.
The classic approach to solving this problem is the pool adjacent violators (PAV) algorithm.

An excellent exposition of this algorithm, in terms of order simplexes, with geometric interpre-
tation, is provided by 3. Grotzinger and Witzgall demonstrate not only that a PAV algorithm,
carefully implemented, has O(n) time and space complexity, but also that the solution obtained
satisfies the KKT conditions. Their work forms the basis for the present algorithm, which differs
only in a subtle aspect.

Recall that our objective is construct an approximation to Df(x), from values computed from
the data, i.e.

Df(xi−1) =
f(xi)− f(xi−1)

xi − xi−1
(13)

If we were to naively follow intuition, we might simply attempt isotonic regression on the
values of Df(xi−1) directly. This would work if the points in Ω were uniformly-spaced, i.e.
xi − xi−1 = xi+1 − xi for i = 1, . . . , n − 2. Unfortunately, this will not in general be the case.
However, it is possible to construct a generalized pooling update which, irrespective of the spac-
ing of the x points preserves the geometric properties of the uniform pooling update; this is
where we make our contribution.

2.1 Generalization of pooling mechanism
The PAV algorithm is initialized with µ = Df(x), w = 1, and λ = 0. The algorithm proceeds
by finding adjacent violators, defined by any j for which µj−1 > µj , then "pooling" them by
constructing a weighted average of the two values

µ′ =
wj−1µj−1 + wjµj

wj−1 + wj
(14)

w′ = wj−1 + wj (15)

then replacing the (j − 1)th block and weight with µ′ and w′, respectively; jth block is then
removed. The transpose is possible – replace jth, remove (j − 1)th – but, as we shall see below,
this leads to O(n2) in the worst case as we cannot represent the blocks as a stack (unless we use
a linked list, which we prefer to avoid).

Note that the above pooling mechanism is equivalent pooling via

µ′ =

∑
i∈Ij−1

wiµi +
∑

i∈Ij
wiµi∑

i∈Ij−1
wi +

∑
i∈Ij

wi
(16)

setting the blocks at i ∈ Ij−1 ∪ Ij equal to µ′, then updating the record of the contiguous indices
which belong to each "pooled" block, which necessitates that one of the elements in said record
be removed (either (j − 1)th or jth, it does not matter which).

The only difference between the two approaches is whether one represents the weight of pooled
blocks via maintenance of (possibly many) block instantiations (the latter option), or by con-
struction of a single block which retains the same information (the former option). The former
option is much preferable from an implementation standpoint, as it leads to O(n) time com-
plexity, whereas the latter option is inevitably O(n2) due to the sums which must be computed

3



from (possibly many) weights each time the pooling mechanism is invoked. The latter option
has O(n2) time complexity even when wi = 1 ∀i due to the requirement that values be copied
into just-pooled block; this results from the literal representation of the basic blocks throughout
the PAV algorithm.

To account for the possibility of non-uniformity of the values xi − xi−1, we re-write the
definition

µj =
νj
ξj

(17)

and change the pooling mechanism to

ν′ =
wj−1νj−1 + wjνj

wj−1 + wj
(18)

ξ′ =
wj−1ξj−1 + wjξj

wj−1 + wj
(19)

w′ = wj−1 + wj (20)

in which νi = dfi = fi − fi−1, ξi = dxi = xi − xi−1. Noting that we have wi = 1 ∀i,

νj =

∑
i∈Ij

dfi

wj
=⇒ wjνj =

∑
i∈Ij

dfi (21)

ξj =

∑
i∈Ij

dxi

wj
=⇒ wjξj =

∑
i∈Ij

dxi (22)

Thus,

ν′ =

∑
i∈Ij−1

dfi +
∑

i∈Ij
dfi

wj−1 + wj
(23)

ξ′ =

∑
i∈Ij−1

dxi +
∑

i∈Ij
dxi

wj−1 + wj
(24)

The pooled value is therefore

µ′ =
ν′

ξ′

=

∑
i∈Ij−1

dfi +
∑

i∈Ij
dfi∑

i∈Ij−1
dxi +

∑
i∈Ij

dxi

(25)

It is useful to elucidate the properties of the generalized pooling mechanism in (25). First,
we demonstrate that it is equivalent to the canonical weighted-average pooling of Df(xi) values
given uniform dxi−1 = xi − xi−1 values. If dxi = c ∀i, then by (21) and (22), we have

µj =

∑
i∈Ij

dfi

c
∑

i∈Ij
1

=

∑
i∈Ij

dfi

cwj

(26)

4



and by (25) we have

µ′ =

∑
i∈Ij−1

dfi +
∑

i∈Ij
dfi

c
∑

i∈Ij−1
1 + c

∑
i∈Ij

1
(27)

=

∑
i∈Ij−1

dfi +
∑

i∈Ij
dfi

c(wj−1 + wj)
(28)

If we substitute the definition µi =
dfi
dxi

= dfi
c into (14), then we have

µ′ =

∑
i∈Ij−1

dfi
dxi

+
∑

i∈Ij
dfi
dxi

wj−1 + wj
(29)

=

∑
i∈Ij−1

dfi +
∑

i∈Ij
dfi

c(wj−1 + wj)
(30)

One observes that the generalized mechanism with constant dxi, (28), is equal to the original
mechanism with constant dxi, (30). This demonstrates that the generalized mechanism preserves
the original weighted average mechanism.

2.1.1 Inductive proof of mechanism equivalence given constant dxi

A formal proof is possible using induction. Consider a sequence of violator blocks, indexed to
j − 1, j, j + 1, j + 2, which maintain violations after pooling such that after pooling j − 1 and j,
the resultant block must be pooled with j + 1, and this second resultant block must be pooled
with j + 2. Let ′ denote the number of pooling operations required to reach a given step, with
pooling occurring left-to-right. We have for the generalized mechanism,

µ′ =
wj−1dfj−1 + wjdfj
wj−1dxj−1 + wjdxj

(31)

µ′′ =
wj−1dfj−1 + wjdfj + wj+1dfj+1

wj−1dxj−1 + wjdxj + wj+1dxj+1
(32)

µ′′′ =
wj−1dfj−1 + wjdfj + wj+1dfj+1 + wj+2dfj+2

wj−1dxj−1 + wjdxj + wj+1dxj+1 + wj+2dxj+2
(33)

We see that if dxj = c ∀j, then the denominator simplifies to c(wj−1 + wj + wj+1 + wj+2). For
the original mechanism,

µ′ =
wj−1

dfj−1

dxj−1
+ wj

dfj
dxj

wj−1 + wj
(34)

µ′′ =
wj−1

dfj−1

dxj−1
+ wj

dfj
dxj

+ wj+1
dfj+1

dxj+1

wj−1 + wj + wj+1
(35)

µ′′′ =
wj−1

dfj−1

dxj−1
+ wj

dfj
dxj

+ wj+1
dfj+1

dxj+1
+ wj+2

dfj+2

dxj+2

wj−1 + wj + wj+1 + wj+2
(36)

If dxj = c ∀j, then dxj terms can be brought to the denominator, and the expressions become
equal.

5



From this exposition, we observe that if the weight of a dfj
dxj

point is dxj , then the original
mechanism becomes

dfj−1 + dfj
dxj−1 + dxj

(37)

which demonstrates that the effect of the generalized mechanism is to make the weight of each
point equal to dxj .

2.2 O(n) algorithm using generalized pooling mechanism
Prior to writing down the algorithm, let us re-examine (17), (21) and (22). Substituting (21)
and (22) into (17) yields

µj =

∑
i∈Ij

dfi∑
i∈Ij

dxi
(38)

for which the update mechanism is given by (23), (24) and (25). We notice that the wj−1 + wj

terms cancel from both µj and µ′. This enables a simplification of the pooling of νj−1, νj and
ξj−1, ξj , as we need only retain the numerators of (21) and (22) in order to compute µj without
loss of information. To illustrate this, we can re-define

νj =
∑
i∈Ij

dfi (39)

ξj =
∑
i∈Ij

dxi (40)

and therefore re-write the pooling as

ν′ = νj−1 + νj =
∑

i∈Ij−1

dfi +
∑
i∈Ij

dfi (41)

ξ′ = ξj−1 + ξj =
∑

i∈Ij−1

dxi +
∑
i∈Ij

dxi (42)

Clearly, the ratios νj

ξj
and ν′

ξ′ remain unchanged. This saves 4 mul and 2 div (and 3 type casts)
per pooling operation, which, while it does not change the time complexity of the algorithm, is
beneficial nonetheless.

We now present the algorithm.

6



Data: (xi, fi) ∈ R2 such that xi < xi+1, i = 0, . . . , n− 1, n ≥ 2
Result: f̄ such that f̄(xi) ≤ fi ∀i

1 // compute forward differences
2 for i← 0 to n− 2 do
3 dfi ← fi+1 − fi;
4 dxi ← xi+1 − xi;
5 end
6 // initialization of PAV
7 ν0 ← df0;
8 ξ0 ← dx0;
9 w0 ← 1;

10 j ← 0;
11 i← 1;
12 n← n− 1;
13 while i < n do
14 // propose new block
15 j ← j + 1;
16 νj ← dfi;
17 ξj ← dxi;
18 wj ← 1;
19 i← i+ 1;
20 // pool adjacent violating blocks: stop when none remain, or only

single block remains
21 while j > 0 and νj−1

ξj−1
>

νj

ξj
do

22 νj−1 ← νj−1 + νj ;
23 ξj−1 ← ξj−1 + ξj ;
24 wj−1 ← wj−1 + wj ;
25 j ← j − 1;
26 end
27 end
28 // construct the GCM
29 f̄0 ← y0;
30 m← j + 1;
31 j ← 0;
32 i← 1;
33 while j <m do
34 Df̄j ← νj

ξj
;

35 for k ← i to i+ wj − 1 do
36 f̄k ← f̄k−1 +Df̄jdxk−1;
37 end
38 i← i+ wj ;
39 j ← j + 1;
40 end

Algorithm 1: Left-to-right GCM
With the algorithm clearly stated, we can proceed with the analysis of its time and space

complexity. By inspection, it is apparent that the forward differences on lines 2 through 5 require
2(n− 1) subtraction operations and storage space equal to 2(n− 1). The core of algorithm, lines
7-27, requires a bit more care to elucidate; it is helpful to provide an informal description. The

7



idea behind such an implementation of PAV, which 3 also describe, is to construct the blocks
one at a time, starting from a single block. Given the initial block, initialized as shown on lines
7-11, one proceeds to propose a new block, then checks whether it violates the KKT conditions,
starting with the preceding block. If it violates primal feasibility, then it is pooled with the
preceding ((j− 1)th) block; we then proceed to check the just-pooled block against its preceding
block, repeating this process until the adjacent blocks no longer violate primal feasibility, or only
a single block remains. Once the cycle of violation checks and pooling has terminated, we return
to the top, propose a new block and enter the cycle again.

More formally, we observe that given the value of j upon entry into the outer while loop, at
most j + 1 violation checks can occur; there are n − 2 increments of j. The best case behavior
corresponds to νj−1

ξj−1
≤ νj

ξj
without any pooling, which incurs n − 2 violation checks. There are

two equivalent worst case behaviors. The first corresponds to νj−1

ξj−1
≥ νj

ξj
upon proposal of each

new block, followed by pooling of νj−1

ξj−1
and νj

ξj
such that νj−2

ξj−2
≤ ν′. This incurs 2 violation checks

and 1 pooling operation per proposal (i.e. per outer loop iteration), hence, 2(n − 2) = 2n − 4
violation checks. The second type of worst case behavior can be realized when νj−1

ξj−1
≤ νj

ξj
up to

but not including j = n−2, followed by νn−2

ξn−2
such that all elements must be pooled. This incurs

n−3 violation checks up to j = n−2, then n−1 violation checks, hence, 2n−4 violation checks.

Hence, in both the best case and worst case, the time complexity of the algorithm is O(n).
This is an asymptotically tight bound, irrespective of the inputs, as we must check at least n− 2
pairs in the best case, and 2n − 4 in the worst case. From the equivalence of the worst case
behavior, we observe that any reduction in the number of violators will reduce the total number
of violation checks and pooling operations; depending on where the violators occur, the behavior
will be some admixture of the first and second type of worst case behavior, but the total checks
can be no more than 2n− 4.

2.3 Verification of KKT conditions
The loop invariant which is maintained by the algorithm consists of the KKT conditions, 9
10, 11 12. The KKT conditions provide a method to ascertain whether an implementation
of the algorithm is correct, subject to finite precision of computer arithmetic. By combining
the expression for the derivative of the Lagrangian, 9, and combining this with complementary
slackness, 12, one observes that within a pooled block, defined by the index set Ij , it must be
the case that ∑

i∈Ij

dxi(Dfi −Df̄i) = 0 (43)

This follows directly from complementary slackness, which between blocks, j and j + 1, neces-
sitates that λj(Df̄i −Df̄i+1) = 0, which implies that λj must be zero. When dual feasibility is
applied, we observe that each partial sum computed as part of (43) must be ≥ 0.

The Lagrange multipliers can be computed in several ways, but the most direct method is to
proceed by re-writing 9 as

λm = λm−1 + dxi(Dfi −Df̄i) (44)

which provides a recurrence relation for m = 0, . . . , k − 2. This provides a direct method of
computation, but there exists another method which is worthwhile to pursue for its geometric

8



interpretation. Begin by noting that

fi = fi−1 +Dfi−1dxi−1

= fi−1 +
dfi−1

dxi−1
dxi−1

= fi−1 + dfi

= f0 +

i−1∑
i∗=0

dfi∗

(45)

f̄i = f̄i−1 +Df̄i−1dxi−1

= f̄i−1 +
df̄i−1

dx̄i−1
dxi−1

= f0 +

i−1∑
i∗=0

df̄i−1

dx̄i−1
dxi−1

(46)

This enables one to substitute into the recurrence, (44), obtaining

λm = λm−1 + dfm − .fm
dx̄m

dxm

= λ−1 +

m∑
i∗

dfi∗ − .fi∗
dx̄i∗

dxi∗

= fm+1 − f̄m

(47)

We now have a clear interpretation for the Lagrange multipliers: they are the distance between
the input (f) and the greatest convex minorant (f̄). Hence, given only a result obtained by an
implementation of the algorithm and the original data, a computer program can be used to verify
that the KKT conditions are satisfied (subject to error introduced due to finite precision).

It may seem trivial to verify something which is known from the construction of an algorithm,
but the disconnect between theory and implementation is an ever-present problem. At the very
least, this enables us check our implementation (which could contain errors!), hence assure users
of the library that the code implements what it purports to.

3 Implementation
For the algorithm described above, we provide a Rust implementation (https://github.com/
andrewjradcliffe/gcm-lcm). The test suite utilizes the KKT conditions, computed as de-
scribed above and also via less direct method, to enforce correctness of the implementation.

4 References
1. Chong, Edwin KP, and Stanislaw H. Żak. An introduction to optimization. Vol. 75. John

Wiley & Sons, 2013. (Vol. 75). John Wiley & Sons.

2. Geyer, Charles J. "Stat 8054 Lecture Notes: Isotonic Regression". (https://www.stat.
umn.edu/geyer/8054/notes/isotonic.pdf) (2023).

9

https://github.com/andrewjradcliffe/gcm-lcm
https://github.com/andrewjradcliffe/gcm-lcm
https://www.stat.umn.edu/geyer/8054/notes/isotonic.pdf
https://www.stat.umn.edu/geyer/8054/notes/isotonic.pdf


3. Grotzinger, Stephen J., and Christoph Witzgall. "Projections onto order simplexes." Ap-
plied mathematics and Optimization 12 (1984): 247-270.

10


	Introduction
	Algorithm
	Generalization of pooling mechanism
	Inductive proof of mechanism equivalence given constant dxi

	O(n) algorithm using generalized pooling mechanism
	Verification of KKT conditions

	Implementation
	References

